Main Article Content
Abstract
The existing mass transportation cannot accommodate Jakarta’s population increase. The Central Statistics Agency stated that the number of vehicles in Jakarta in 2022 was 26.370.535. The high level of vehicle mobilization results in vehicle congestion in Jakarta. For this reason, it is necessary to have a mode of mass transportation to be a solution to solving congestion. Airships are air mass transportation with a propulsion system consisting of gas and engines. The design of the mode of transportation is carried out using a quantitative method through a literature review approach and numerical formulation analysis. The resulting airship designs have a capacity of 40 people, a total load of 9764 kg, balloon dimensions of 46 m x 13 m x 18 m, and gondola dimensions of 11 m x 4 m x 2m. This research provides a study of the design of mass transportation modes with air operations, which can be a solution to the congestion that occurs. Can reduce existing congestion with efficient routes for the mobilization process at work time.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- BPS, “Jumlah Penduduk Provinsi DKI Jakarta Menurut Kelompok Umur dan Jenis Kelamin 2019-2021,” Jakarta, Indonesia, 2022. [Online]. Available: https://jakarta.bps.go.id/indicator/12/111/1/jumlah-penduduk-provinsi-dki-jakarta-menurut-kelompok-umur-dan-jenis-kelamin.html
- V. B. Kusnandar, “Jakarta Pusat Jadi Wilayah Terpadat di Ibu Kota per Juni 2022,” Databoks, 2022. https://databoks.katadata.co.id/datapublish/2022/10/09/jakarta-pusat-jadi-wilayah-terpadat-di-ibu-kota-per-juni-2022#:~:text=Secara keseluruhan%2C luas wilayah Provinsi,juta jiwa pada Juni 2022. (accessed Apr. 03, 2023).
- BPS, “Jumlah Kendaraan Bermotor Menurut Jenis Kendaraan (unit) di Provinsi DKI Jakarta 2019-2021,” Jakarta, 2022. [Online]. Available: https://jakarta.bps.go.id/indicator/17/786/1/jumlah-kendaraan-bermotor-menurut-jenis-kendaraan-unit-di-provinsi-dki-jakarta.html
- N. Octaviani, S Najid, “Pengaruh Penerapan Erp Terhadap Waktu Tempuh Feeder Dan Waktu Tempuh Perjalanan Ruas Jalan Gatot Subroto,” MTS J. Mitra Tek. Sipil, vol. 3, no. 4, p. 951, 2020.
- F. A. Quinta and H. B. S. E. Prakoso, “Kajian Pemanfaatan Moda Transportasi Kereta Rel Listrik (Krl) Commuter Line Dalam Pergerakan Komuter Bekasi-Jakarta,” Univ. Gadjah Mada, pp. 1–10, 2016.
- I. Syafei and L. B. Said, “Analisis Persepsi Kepuasan Pengguna Transportasi Udara pada Bandar Udara Sultan Hasanuddin Kota Makassar,” vol. 02, no. 01, pp. 21–28, 2022.
- M. L. Levitt, Airship Operations During World War II. Florida: Florida Atlantic University, 1982.
- A. D. Gultom and D. Yuniarti, “Kajian Teknologi High Altitude Platform (HAP) [Study of High Altitude Platform (HAP) Technology],” Bul. Pos dan Telekomun., vol. 14, no. 1, p. 11, 2016, doi: 10.17933/bpostel.2016.140102.
- P. Purwadi, F. Sunarto, A. Muttaqin, and T. H. Seto, “Aplikasi Mobile Zappeline Sebagai Media Teknologi Modifikasi Cuaca (Tmc) Dan Penipisan Polutan Udara (Asap),” J. Sains Teknol. Modif. Cuaca, vol. 15, no. 2, p. 57, 2014, doi: 10.29122/jstmc.v15i2.2671.
- M. Manikandan and R. S. Pant, “Progress in Aerospace Sciences Research and advancements in hybrid airships — A review,” Prog. Aerosp. Sci., no. January, p. 100741, 2021, doi: 10.1016/j.paerosci.2021.100741.
- L. Liao and I. Pasternak, “A review of airship structural research and development,” Prog. Aerosp. Sci., vol. 45, no. 4–5, pp. 83–96, 2009, doi: 10.1016/j.paerosci.2009.03.001.
- J. W. Lancaster, “FEASIBILITY STUDY VOLUME III - APPENDICES,” 1975.
- L. Zhang, M. Lv, J. Meng, and H. Du, “Conceptual design and analysis of hybrid airships with renewable energy,” vol. 0, no. 37, pp. 1–16, 2017, doi: 10.1177/0954410017711726.
- R. Cross, “Aerodynamics of a Party Balloon,” Phys. Teach., vol. 45, no. 6, pp. 334–336, 2007, doi: 10.1119/1.2768686.
- T. Michele et al., “Constructal Design For Efficiency : The Case Of Airship Design,” pp. 1–12, 2013.
- Q. Wang, J. Chen, G. Fu, and D. Duan, “An approach for shape optimization of stratosphere airships based on multidisciplinary design optimization *,” vol. 10, no. 11, pp. 1609–1616, 2009, doi: 10.1631/jzus.A0820814.
- L. Ping and X. L. Wang, “Aerodynamic characteristics of airship Zhiyuan-1 Aerodynamic Characteristics of Airship Zhiyuan-1,” no. December 2013, 2018, doi: 10.1007/s12204-013-1443-9.
- B. . A. De YOUNG, “The Calculation of the Total and Skin Friction Drags of Bodies of Revolution at Zero Incidence,” pp. 51–70, 1939.
- T. Lutz And S. Wagner, “Drag Reduction And Shape,” pp. 1–11, 1997.
- A. Nakayama and V. C. Patelt, “Calculation of the Viscous Resistance of Bodies of Revolution,” vol. 8, no. 4, pp. 154–162, 1974.
- I. Madmud, “Istaq - Modern Airship Design Using CAD and Historical Case Studies,” no. May, 2015, [Online]. Available: https://www.sjsu.edu/ae/docs/project-thesis/Istiaq.Mahmud-S15.pdf
- A. José and N. Marques, “Conceptual Design of a Hybrid Airship,” 2014.
- M. Manikandan, E. Vaidya, and R. S. Pant, “Design and analysis of hybrid electric multi-lobed airship for cargo transportation,” Sustain. Energy Technol. Assessments, vol. 51, no. December 2021, p. 101892, 2022, doi: 10.1016/j.seta.2021.101892.
- Britannica, “Charles’s Law,” Encyclopedia Britannica, 2021. https://www.britannica.com/science/Charless-law (accessed Dec. 18, 2022).
- M. Cavcar, “The International Standard Atmosphere ( ISA ),” pp. 1–7, 1952.
- Rijksluchtvaartdienst, S. & Luftfahrt-Bundesamt, and Hermann-Blenk-Strasse, “Transport Airship Requirements,” 2000.
- J. B. Mueller and M. A. Paluszek, “Development of an Aerodynamic Model and Control Law Design for a High Altitude Airship,” no. September, pp. 1–17, 2004.
- H. Liang, M. Zhu, and X. Guo, “Conceptual Design Optimization of High Altitude Airship in,” no. January, pp. 1–17, 2012.
- S. M. Kale, P. Joshi, and R. S. Pant, “A generic methodology for determination of drag coefficient of an aerostat envelope using CFD,” pp. 1–16.
- C. V. R. and R. S. Pant, “E ngineering N otes,” vol. 47, no. 3, pp. 1073–1076, 2010, doi: 10.2514/1.46744.
- Anonim, “Airlander 10 Technical Data,” no. August, p. 2012, 2012.
- EASA, “TYPE-CERTIFICATE,” 2019.
References
BPS, “Jumlah Penduduk Provinsi DKI Jakarta Menurut Kelompok Umur dan Jenis Kelamin 2019-2021,” Jakarta, Indonesia, 2022. [Online]. Available: https://jakarta.bps.go.id/indicator/12/111/1/jumlah-penduduk-provinsi-dki-jakarta-menurut-kelompok-umur-dan-jenis-kelamin.html
V. B. Kusnandar, “Jakarta Pusat Jadi Wilayah Terpadat di Ibu Kota per Juni 2022,” Databoks, 2022. https://databoks.katadata.co.id/datapublish/2022/10/09/jakarta-pusat-jadi-wilayah-terpadat-di-ibu-kota-per-juni-2022#:~:text=Secara keseluruhan%2C luas wilayah Provinsi,juta jiwa pada Juni 2022. (accessed Apr. 03, 2023).
BPS, “Jumlah Kendaraan Bermotor Menurut Jenis Kendaraan (unit) di Provinsi DKI Jakarta 2019-2021,” Jakarta, 2022. [Online]. Available: https://jakarta.bps.go.id/indicator/17/786/1/jumlah-kendaraan-bermotor-menurut-jenis-kendaraan-unit-di-provinsi-dki-jakarta.html
N. Octaviani, S Najid, “Pengaruh Penerapan Erp Terhadap Waktu Tempuh Feeder Dan Waktu Tempuh Perjalanan Ruas Jalan Gatot Subroto,” MTS J. Mitra Tek. Sipil, vol. 3, no. 4, p. 951, 2020.
F. A. Quinta and H. B. S. E. Prakoso, “Kajian Pemanfaatan Moda Transportasi Kereta Rel Listrik (Krl) Commuter Line Dalam Pergerakan Komuter Bekasi-Jakarta,” Univ. Gadjah Mada, pp. 1–10, 2016.
I. Syafei and L. B. Said, “Analisis Persepsi Kepuasan Pengguna Transportasi Udara pada Bandar Udara Sultan Hasanuddin Kota Makassar,” vol. 02, no. 01, pp. 21–28, 2022.
M. L. Levitt, Airship Operations During World War II. Florida: Florida Atlantic University, 1982.
A. D. Gultom and D. Yuniarti, “Kajian Teknologi High Altitude Platform (HAP) [Study of High Altitude Platform (HAP) Technology],” Bul. Pos dan Telekomun., vol. 14, no. 1, p. 11, 2016, doi: 10.17933/bpostel.2016.140102.
P. Purwadi, F. Sunarto, A. Muttaqin, and T. H. Seto, “Aplikasi Mobile Zappeline Sebagai Media Teknologi Modifikasi Cuaca (Tmc) Dan Penipisan Polutan Udara (Asap),” J. Sains Teknol. Modif. Cuaca, vol. 15, no. 2, p. 57, 2014, doi: 10.29122/jstmc.v15i2.2671.
M. Manikandan and R. S. Pant, “Progress in Aerospace Sciences Research and advancements in hybrid airships — A review,” Prog. Aerosp. Sci., no. January, p. 100741, 2021, doi: 10.1016/j.paerosci.2021.100741.
L. Liao and I. Pasternak, “A review of airship structural research and development,” Prog. Aerosp. Sci., vol. 45, no. 4–5, pp. 83–96, 2009, doi: 10.1016/j.paerosci.2009.03.001.
J. W. Lancaster, “FEASIBILITY STUDY VOLUME III - APPENDICES,” 1975.
L. Zhang, M. Lv, J. Meng, and H. Du, “Conceptual design and analysis of hybrid airships with renewable energy,” vol. 0, no. 37, pp. 1–16, 2017, doi: 10.1177/0954410017711726.
R. Cross, “Aerodynamics of a Party Balloon,” Phys. Teach., vol. 45, no. 6, pp. 334–336, 2007, doi: 10.1119/1.2768686.
T. Michele et al., “Constructal Design For Efficiency : The Case Of Airship Design,” pp. 1–12, 2013.
Q. Wang, J. Chen, G. Fu, and D. Duan, “An approach for shape optimization of stratosphere airships based on multidisciplinary design optimization *,” vol. 10, no. 11, pp. 1609–1616, 2009, doi: 10.1631/jzus.A0820814.
L. Ping and X. L. Wang, “Aerodynamic characteristics of airship Zhiyuan-1 Aerodynamic Characteristics of Airship Zhiyuan-1,” no. December 2013, 2018, doi: 10.1007/s12204-013-1443-9.
B. . A. De YOUNG, “The Calculation of the Total and Skin Friction Drags of Bodies of Revolution at Zero Incidence,” pp. 51–70, 1939.
T. Lutz And S. Wagner, “Drag Reduction And Shape,” pp. 1–11, 1997.
A. Nakayama and V. C. Patelt, “Calculation of the Viscous Resistance of Bodies of Revolution,” vol. 8, no. 4, pp. 154–162, 1974.
I. Madmud, “Istaq - Modern Airship Design Using CAD and Historical Case Studies,” no. May, 2015, [Online]. Available: https://www.sjsu.edu/ae/docs/project-thesis/Istiaq.Mahmud-S15.pdf
A. José and N. Marques, “Conceptual Design of a Hybrid Airship,” 2014.
M. Manikandan, E. Vaidya, and R. S. Pant, “Design and analysis of hybrid electric multi-lobed airship for cargo transportation,” Sustain. Energy Technol. Assessments, vol. 51, no. December 2021, p. 101892, 2022, doi: 10.1016/j.seta.2021.101892.
Britannica, “Charles’s Law,” Encyclopedia Britannica, 2021. https://www.britannica.com/science/Charless-law (accessed Dec. 18, 2022).
M. Cavcar, “The International Standard Atmosphere ( ISA ),” pp. 1–7, 1952.
Rijksluchtvaartdienst, S. & Luftfahrt-Bundesamt, and Hermann-Blenk-Strasse, “Transport Airship Requirements,” 2000.
J. B. Mueller and M. A. Paluszek, “Development of an Aerodynamic Model and Control Law Design for a High Altitude Airship,” no. September, pp. 1–17, 2004.
H. Liang, M. Zhu, and X. Guo, “Conceptual Design Optimization of High Altitude Airship in,” no. January, pp. 1–17, 2012.
S. M. Kale, P. Joshi, and R. S. Pant, “A generic methodology for determination of drag coefficient of an aerostat envelope using CFD,” pp. 1–16.
C. V. R. and R. S. Pant, “E ngineering N otes,” vol. 47, no. 3, pp. 1073–1076, 2010, doi: 10.2514/1.46744.
Anonim, “Airlander 10 Technical Data,” no. August, p. 2012, 2012.
EASA, “TYPE-CERTIFICATE,” 2019.