Main Article Content

Abstract

Main landing gear is a component in UAVs that have support abilities to take off
and landing. Repeated loads occur during UAV landings, impact of these cyclic loads can lead
to fatigue failure in the main landing gear. The life cycle analysis aims to determine the lifespan
of the main landing gear based on the influence of material variations and landing speed
variations. The materials considered are Al 6061 T6, Al 2024 T3, and Al 7075 T6, with landing
speed variations of 4 m/s, 6 m/s, 8 m/s, and 10 m/s. In this research, dynamic loading analysis
and cyclic load analysis were performed on the UAV's main landing gear, modeled in the form
of a leaf spring. Numerical analysis was conducted using finite element-based software. In the
dynamic loading analysis results for landing speed variations, a speed of 4 m/s yielded a
maximum stress value of 236,1 MPa and a maximum displacement of 2,949 mm, while a
speed of 10 m/s resulted in a maximum stress value of 308,8 MPa and a maximum
displacement of 6,482 mm. In the dynamic loading analysis with material variations, the
material Al 2024 T3 exhibited a maximum stress value of 362,6 MPa and a maximum
displacement of 4,938 mm. In the cyclic load analysis, Al 6061 T6 had a minimum fatigue life
of 659.060 cycles at a speed of 4 m/s and 6.786,6 cycles at a speed of 10 m/s. Al 2024 T3
showed a minimum fatigue life of 3.308.100 cycles at a speed of 4 m/s and 16.739 cycles at
a speed of 10 m/s. Al 7075 T6 had a minimum fatigue life of 982.900 cycles at a speed of 4
m/s and 8.795,9 cycles at a speed of 10 m/s.

Keywords

UAV Roda pendaratan Leaf Spring Siklus beban Life cycle

Article Details

How to Cite
Ajie Erlangga Antariksa, Budi Aji Warsiyanto, & Syarifah Fairuza. (2024). Analisis Life Cycle Struktur Main Landing Gear UAV dengan Material Aluminium Berdasarkan Variasi Kecepatan Landing. Jurnal Teknologi Kedirgantaraan, 9(2), 105-114. https://doi.org/10.35894/jtk.v9i2.111

References

  1. Pusat Teknologi Penerbangan, “LAPAN Surveillance UAV,” [Online]. Tersedia: http://pustekbang.lapan.go.id. Diakses pada: Jun. 26, 2023.
  2. L. A. Wibawa, “Desain Dan Analisis Kekuatan Rangka Tricycle Landing Gear UAV Menggunakan Metode Elemen Hingga,” MECHANICAL, vol. 9, no. 2, pp. 33-39, Feb. 2019. doi: 10.23960/mech.v9.i2.201806.
  3. FAA, Aviation Maintenance Technician Handbook--Airframe, FAA-H-8083-31B, Newcastle, WA: Aviation Supplies & Academics, Inc., 2023.
  4. B. A. Warsiyanto, M. H. Widanto, I. Musthofa, and I. Maulana, “Dynamic response of commuter category aircraft wing against drone collision,” 2021.
  5. B. A. Warsiyanto et al., “The Effect of Cross-section and Elliptical Hole Ratio on Crashworthiness Parameters of Crash-Box Structure,” 2021.
  6. M. Hadi Widanto, E. Surya, A. Chaeroni, P. Teknik Penerbangan, F. Teknik Kedirgantaraan, and U. Dirgantara Marsekal Suryadarma, “Analisis Kerusakan Pelat Komposit Akibat Beban Low Velocity IMPact Terhadap Variasi Energi Impak Dengan Menggunakan Element Split,” Jurnal Teknologi Kedirgantaraan, vol. 9, no. 1, pp. 1–8, 2023.
  7. M. Fadli, M. Hadi Widanto, and S. Fairuza, “Analisis Impak Landing Skid Drone Agrikultur Dengan Variasi Ground Contur,” Jurnal Teknologi Kedirgantaraan, vol. 9, no. 1, pp. 29–36, 2023.
  8. B. C. Putri, “E-modul Materi Momentum dan Impuls,” FlipHTML5, [Online]. Tersedia: https://fliphtml5.com/upoqe/rcfg. Diakses pada: Oct. 12, 2023.
  9. “Fatigue Life,” Fatigue life: Definition and description, [Online]. Tersedia: https://www.zwickroell.com/industries/materials-testing/fatigue-test/fatigue-life/. Diakses pada: Sep. 1, 2023.
  10. A. Nopelandi, “Simulasi Beban IMPact Passenger Boarding Stairs Pada Skin Fuselage Dengan Variasi Sudut, Kecepatan, Dan Lokasi IMPact,” Skripsi, Program Studi Teknik Penerbangan, Fakultas Teknologi Kedirgantaraan, Universitas Dirgantara Marsekal Suryadarma, Jakarta, 2023.