Main Article Content

Abstract

Komposit merupakan material yang paling banyak digunakan pada struktur pesawat terbang. Hal ini karena material komposit memiliki kekuatan struktur yang tinggi dan berat yang ringan. Namun komposit mempunyai kelemahan yaitu tidak tahan terhadap beban impak karena sifatnya yang getas. Beban impak dapat terjadi akibat human error pada saat dilakukan perawatan akibat benda jatuh atau karena tumbukan benda asing lainnya. Pada penelitian ini dilakukan simulasi impak struktur komposit untuk mengetahui ketahan komposit dengan variasi energi impak. Pada simulasi impak menggunakan metode elemen hingga dengan memodelkan intralaminar dan interlaminar menggunakan metode kegagalan hashin dan cohesive zone model. Penelitian terhadap pengaruh element split yang dimodelkan pada pelat komposit menjadi penelitian utama. Dari hasil menunjukkan pengaruh element split terhadap respon dinamik dan kerusakan delaminasi dapat memberikan hasil dengan korelasi yang lebih baik terhadap hasil eksperimen.

Keywords

Cohesive Zone Model komposit Low Velocity Impact Element Split

Article Details

How to Cite
Widanto, M. H., Amat Chaeroni, & Surya, E. (2024). Analisis Kerusakan Pelat Komposit Akibat Beban Low Velocity Impact Terhadap Variasi Energi Impak Dengan Menggunakan Elemet Split . Jurnal Teknologi Kedirgantaraan, 9(1), 1-8. https://doi.org/10.35894/jtk.v9i1.103

References

  1. D. Feng and F. Aymerich, “Finite element modelling of damage induced by low-velocity impact on composite laminates,” Compos Struct, vol. 108, no. 1, 2014, doi: 10.1016/j.compstruct.2013.09.004.
  2. W. Zhuang, P. Wang, W. Ao, and G. Chen, “Experiment and Simulation of Impact Response of Woven CFRP Laminates with Different Stacking Angles,” J Shanghai Jiaotong Univ Sci, vol. 26, no. 2, pp. 218–230, Apr. 2021, doi:10.1007/s12204-021-2271-y.
  3. B. Liao et al., “Effect of double impact positions on the low velocity impact behaviors and damage interference mechanism for composite laminates,” Compos Part A Appl Sci Manuf, vol. 136, Sep. 2020, doi: 10.1016/j.compositesa.2020.105964.
  4. A. Sasikumar, D. Trias, J. Costa, N. Blanco, J. Orr, and P. Linde, “Effect of ply thickness and ply level hybridization on the compression after impact strength of thin laminates,” Compos Part A Appl Sci Manuf, vol. 121, pp. 232–243, Jun. 2019, doi:
  5. 1016/j.compositesa.2019.03.022.
  6. J. Bachmann, C. Hidalgo, and S. Bricout, “Environmental analysis of innovative sustainable composites with potential use in aviation sector—A life cycle assessment review,” Sci China Technol Sci, vol. 60, no. 9, pp. 1301–1317, 2017, doi: 10.1007/s11431-016-9094-y.
  7. A. S. Al Omari, K. S. Al-Athel, A. F. M. Arif, and F. A. Al-Sulaiman, “Experimental and computational analysis of low-velocity impact on carbon-, glass- and mixed-fiber composite plates,” Journal of Composites Science, vol. 4, no. 4, 2020, doi: 10.3390/jcs4040148.
  8. H. Cao et al., “Experimental investigation of impactor diameter effect on low-velocity impact response of CFRP laminates in a drop-weight impact event,” Materials, vol. 13, no. 18, Sep. 2020, doi: 10.3390/ma13184131.
  9. X. C. Sun, M. R. Wisnom, and S. R. Hallett, “Interaction of inter- and Intralaminar damage in scaled quasi-static indentation tests: Part 2 - Numerical simulation,” Compos Struct, vol. 136, pp. 727–742, Feb. 2016, doi: 10.1016/j.compstruct.2015.09.062.
  10. B. Liao et al., “An explicit–implicit combined model for predicting residual strength of composite cylinders subjected to low velocity impact,” Compos Struct, vol. 247, Sep. 2020, doi: 10.1016/j.compstruct.2020.112450.
  11. Z. Hashin, “Fatigue failure criteria for unidirectional fiber composites,”Journal of Applied Mechanics, Transactions ASME, vol. 48, no. 4, pp. 846–852, 1981, doi: 10.1115/1.3157744.
  12. Z. Hashin and A. Rotem, “A Fatigue Failure Criterion for Fiber Reinforced Materials,” J Compos Mater, vol. 7, no. 4, pp. 448–464, 1973, doi: 10.1177/002199837300700404.
  13. P. P. Camanho and F. L. Matthews, “A progressive damage model for mechanically fastened joints in composite laminates,” J Compos Mater, vol. 33, no. 24, pp. 2248–2280, 1999, doi:10.1177/002199839903302402.